Abstract

Activated carbon cloth dressing is an appropriate wound healing material due to its biocompatibility and adsorption characteristics. The influence of gamma radiation as a sterilization process on the adsorption and mechanical properties of activated carbon cloth was investigated. The specific surface area, micropore volume, pore size distribution, surface chemistry as well as the breaking load of activated carbon cloth before and after gamma radiation were examined. Characterization by nitrogen adsorption showed that the activated carbon cloth was a microporous material with a high specific surface area and micropores smaller than 1 nm. Gamma radiation decreased the specific surface area and micropore volume but increased the pore width. The sterilization process changed the surface chemistry quantitatively, but not qualitatively. In addition, the breaking load decreased but without any influence considering the further application of this material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.