Abstract

This research focuses on characterizing hardness evolution in irradiated high density polyethylene (HDPE) at elevated temperatures. Hardness increases with increasing gamma ray dose, annealing temperature and annealing time. The hardness change is attributed to the variation of defects in microstructure and molecular structure. The kinetics of defects that control the hardness are assumed to follow the first order structure relaxation. The experimental data are in good agreement with the predicted model. The rate constant follows the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The defects that control hardness in post-annealed HDPE increase with increasing dose and annealing temperature. The structure relaxation of HDPE has a lower energy of mixing in crystalline regions than in amorphous regions. Further, the energy of mixing for defects that influence hardness in HDPE is lower than those observed in polycarbonate (PC), poly(methyl methacrylate) (PMMA) and poly (hydroxyethyl methacrylate) (HEMA). This is due to the fact that polyethylene is a semi-crystalline material, while PC, PMMA and PHEMA are amorphous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.