Abstract

When skin is thermally burned, transfer of heat energy into the skin results in the destruction of cells. Some of these cells are damaged but may be capable of self-repair and survival, thereby contributing to spontaneous healing of the wound. Keratin protein-based biomaterials have been suggested as potential treatments for burn injury. Isolation of cortical proteins from hair fibers results in an acid soluble fraction of keratin proteins referred to as “gamma” keratose. In the present study, treatment with this fraction dissolved in media was able to maintain cell viability after thermal stress in an in vitro model using primary mouse dermal fibroblasts. PCR array analysis demonstrated that gamma keratose treatment may assist in the survival and salvage of thermally stressed cells by maintaining their viability through regulation of cell death pathway-related genes. Gamma keratose may be a promising biomaterial for burn treatment that aids in spontaneous wound healing from viable tissue surrounding the burn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.