Abstract

Fuel staging is a commonly used strategy in the operation of gas turbine engines. In multinozzle combustor configurations, this is achieved by varying fuel flow rate to different nozzles. The effect of fuel staging on flame structure and self-excited instabilities is investigated in a research can combustor employing five swirl-stabilized, lean-premixed nozzles. At an operating condition where all nozzles are fueled equally and the combustor undergoes a self-excited instability, fuel staging successfully suppresses the instability: both when overall equivalence ratio is increased by staging as well as when overall equivalence ratio is kept constant while staging. Increased fuel staging changes the distribution of time-averaged heat release rate in the regions where adjacent flames interact and reduces the amplitudes of heat release rate fluctuations in those regions. Increased fuel staging also causes a breakup in the monotonic phase behavior that is characteristic of convective disturbances that travel along a flame. In particular, heat release rate fluctuations in the middle flame and flame–flame interaction region are out-of-phase with those in the outer flames, resulting in a cancelation of the global heat release rate oscillations. The Rayleigh integral distribution within the combustor shows that during a self-excited instability, the regions of highest heat release rate fluctuation are in phase-with the combustor pressure fluctuation. When staging fuel is introduced, these regions fluctuate out-of-phase with the pressure fluctuation, further illustrating that fuel staging suppresses instabilities through a phase cancelation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.