Abstract
BackgroundPhysiological fluid shear stress has been shown to have a beneficial impact on vascular homeostasis. Endothelial progenitor cells (EPCs) make a significant contribution to maintaining endothelial integrity. Therefore, we hypothesised that shear stress-induced endothelium protection plays a role in hydrogen sulphide (H2S) production and up-regulation of cystathionine γ-lyase (CSE) expression in EPCs.MethodsHuman EPC-derived CSE activity was detected by colorimetric assay, and H2S production was evaluated by membrane adsorption method. Cell proliferation, migration, and adhesion were assessed by MTT, Transwell, and endothelial cell-mediated adhesion assays, respectively. Real-time polymerase chain reaction (RT-PCR) was carried out to analyse gene expression. Protein expression was analysed by western blot.ResultsHuman EPCs were treated with shear stress levels of 5–25 dyn/cm2 for up to 3 h, and 25 dyn/cm2 for up to 24 h. H2S production and CSE mRNA expression in the EPCs were increased by shear stress in a dose-dependent manner in vitro. Likewise, time-dependent shear stress also significantly enhanced CSE protein expression. Compared to static condition, shear stress improved EPCs proliferation, migration and adhesion capacity. Knockdown of CSE expression by small interfering RNA substantially eliminated the shear stress-induced above functions of human EPCs in vitro.ConclusionsThis study gives new insight into the regulatory effect of physiological shear stress on the CSE/H2S system in human EPCs. Our findings may contribute to the development of vascular protective research, although the relevant evidence is admittedly indirect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annals of translational medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.