Abstract

A theoretical analysis was made to study the effect of fluid inertia on a porous thrust plate. The most elementary configuration was chosen as an analytic model to investigate this effect with a minimum of mathematical complexities. Numerical data were obtained for an incompressible film. The results reveal that the effect of fluid inertia can be important, depending on the film thickness H and a parameter Ω. For small value of H the inertia effect is essentially confined to a very narrow region near the edge of the bearing while for large values of H this effect spreads throughout the fluid film. This pressure boundary layer at low H is similar to that in a self-acting gas bearing. In general it was found that inertia effects tend to influence favorably the flow and load capacity of porous thrust plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.