Abstract

The effect of fluid flow on eutectic microstructure is systematically examined in Al-Cu alloys of compositions varying from 19.5 to 45.0 wt pct Cu. It is shown that significantly different fluid-flow effects are present in hypo- and hypereutectic alloys, since the modes of convection are different in these two cases. In hypoeutectic alloys, the rejected solute is copper, which is heavier than aluminum, and fluid flow gives rise to radial solute segregation in cylindrical samples. In hypereutectic alloys, a lighter aluminum is rejected that causes a double diffusive convection and gives rise to macrosegregation. These composition variations are shown to produce nonuniform microstructures that vary either radially (in hypoeutectic alloys) or axially (in hypereutectic alloys) and can give rise to a single phase-to-eutectic, lamellar-to-rod eutectic, or rod-to-lamellar eutectic transition in a given sample. Composition measurements are carried out to characterize solute segregation due to fluid flow. The fluid-flow effect on eutectic spacing in eutectic or near-eutectic alloys is found to be very small, whereas it increases the eutectic spacing in hypoeutectic alloys for a given local composition and it can increase or decrease the spacing in hypereutectic alloys, depending on the microstructure and solidification fraction. Theoretical models, based on diffusive grwoth, are modified to predict the spatio-temporal variation in eutectic microstructure caused by fluid flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.