Abstract

Flower-like magnesium hydroxide (Mg(OH)2) nanostructures were synthesized via a simple hydrothermal reaction at relatively low temperature. The Mg(OH)2 nanostructures were then added to acrylonitrile–butadiene–styrene (ABS) and cellulose acetate (CA) polymers. The effect of Mg(OH)2 nanostructures on the thermal stability of the polymeric matrixes has been investigated. The thermal decomposition of the nanocomposites shifts towards higher temperature in the presence of the Mg(OH)2. The enhancement of thermal stability of nanocomposites is due to endothermically decomposition of magnesium hydroxide that releases of water and dilutes combustible gases. Nanostructures and nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA), UL-94 test and limiting oxygen index (LOI) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.