Abstract

Recently, we proposed a thermodynamically consistent excluded-volume model for the HG fireball and we noticed that our model gives a suitable description of various properties of multiparticle production and their ratios in the entire range of temperatures and baryon densities. Our aim in this paper is to obtain the variations of freeze-out volume in a slice of unit rapidity, i.e. dV/dy, as well as total volume of the fireball with respect to center-of-mass energy , and to compare our model calculations with the corresponding thermal freeze-out volume obtained from the Hanbury–Brown–Twiss pion interferometry method. We also test the validity of our model in extracting the total multiplicities as well as the central rapidity densities of various hadrons and comparing them with the recent results. We further calculate the rapidity and transverse momentum spectra of various particles produced in different heavy-ion collider experiments in order to examine the role of flow by matching our predictions with the available experimental results. Finally, we extend our analysis for the production of light nuclei, hypernuclei and their antinuclei over a broad energy range from alternating gradient synchrotron to large hadron collider energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call