Abstract

Inclined surfaces, where both the lifter and load are on the slope, may be encountered in a jobsite situation. The purpose of this study was to determine if facing up or down a sloped surface (10° and 20°) would affect maximal acceptable weights of lift (MAWL) using a 10 min psychophysical approach with symmetric freestyle technique at 4 lifts/min. Seventeen healthy men and 18 women determined floor to knuckle height MAWL while facing uphill, downhill, and on a level surface. Motion capture was also performed to examine sagittal plane joint angles and foot placement relative to a milk crate. Slope did not alter MAWL ( p>0.05) with the men lifting more than the women in every condition ( p<0.001) (25 kg vs. 15 kg, respectively). Foot placement relative to the box was altered by slope such that both horizontal position behind and vertical position below the box increased as slope changed from the downhill to uphill conditions (both p<0.001). Forward torso lean as well as hip, knee, and ankle (plantar) flexion generally decreased as slope changed from the downhill to uphill conditions (all p<0.001). Torso and knee motion appeared to be protected compared to the other joints, changing the least. Though trends were the same in both sexes, interactions did exist in vertical foot position and hip angle (both p⩽0.001). In conclusion, the body is highly adaptive to floor slope, maintaining MAWL at least in the short term. However, while slight technique differences exist between men and women, care should be taken by all when facing uphill due to the tendency to stand further from the load horizontally and when facing downhill due to increased torso lean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.