Abstract
The resonance self-shielding effect of fission products on burnup characteristics has been investigated in high conversion light water reactors. Reactivity loss by burnup was considerably reduced by taking account of the self-shielding effects of fission products. The effect caused a difference of --0.6% for the multiplication factor at 50 GWd/tonne burnup and it contributed to a negative void reactivity. Furthermore, the mutual shielding effects of resonance overlapping among actinides and fission products have been examined and observed for several fission products. The effect of nuclear data uncertainties of fission products on the burnup reactivity change has been also examined by comparing the results obtained with four evaluated nuclear data files: JENDL-2, JEF-1, ENDF/B-IV, and -V. Fractional absorption rates for individual fission product nuclides were considerably scattered among these files. A significant difference between the reactivity changes calculated with JENDL-2 and ENDF/B-V was observed, while the discrepancy between those obtained with JENDL-2 and JEF-1 was small due to an accidental cancellation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.