Abstract

The fire performance of a geocement-based binder was investigated with a combination of analytical techniques, in terms of changes in composition and microstructure. Geocement, formulated as Na2O∙Al2O3∙6SiO2∙20H2O, was prepared using metakaolin, sodium water-glass, rotten stone and sodium hydroxide. The mixture was homogenized by passing through a hydrodynamic cavitator. Cubes of 20 mm were prepared, hardened at laboratory conditions for 28 days, and subsequently burnt at 600, 800 and 1200 °C in a laboratory furnace. Cavitation treatment resulted in a highly amorphous binder; amorphous fraction decreased upon firing up to 800 °C due to crystallization, and increased above 1000 °C because of melt formation. Porosity increased with firing temperature and pores larger than 1 mm in diameter prevailed at 1200 °C. The material remained stable up to 1200 °C. The results indicate the adequacy of this geocement-based binder for preparing fire-protecting materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call