Abstract
In this manuscript, free vibrations of a unidirectional composite orthotropic Timoshenko beam based on finite strain have been studied. Using Green-Lagrange strain tensor and comprising all of the nonlinear terms of the tensor and also applying Hamilton's principle, equations of motion and boundary conditions of the beam are obtained. Using separation method in single-harmonic state, time and locative variables are separated from each other and finally, the equations of motion and boundary conditions are gained according to locative variable. To solve the equations, generalized differential quadrature method (GDQM) is applied and then, deflection and cross-section rotation of the beam in linear and nonlinear states are drawn and compared with each other. Also, frequencies of carbon/epoxy and glass/epoxy composite beams for different boundary conditions on the basis of the finite strain are calculated. The calculated frequencies of the nonlinear free vibration of the beam utilizing finite strain assumption for various geometries have been compared to von Karman one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.