Abstract

The objective of this study was to measure the combined effects of fiber type (fine wool, mid-micron wool, acrylic), yarn type (high twist, low twist, single) and fabric structure (single jersey, half-terry, terry) on friction between sock fabrics and a synthetic skin using the horizontal platform method. The effect of weight of a hypothetical wearer and moisture content of a sock fabric were also investigated. Differences among fabrics were analyzed using frictional force traces. Data compared included the static and dynamic friction and coefficients of friction, as well as three new descriptive parameters. All variables investigated affected the frictional characteristics between a sock fabric and a synthetic skin. Single jersey fabrics had the lowest coefficient of static and dynamic friction. Friction between fabric and a synthetic skin was affected most by the applied weight, with the simulated adult weight resulting in a greater frictional force, and higher coefficients of static and dynamic friction. The most important effect of fiber was on the static frictional force and coefficient of static friction of damp fabrics, with fabrics composed of fine wool exhibiting lowest friction, and acrylic fabrics the highest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call