Abstract

AbstractIncreasing atmospheric carbon dioxide (ab. CO2) and fertilizer‐nitrogen (ab. N) applications may have marked direct effects on the plant growth of agricultural crops, and in turn affect the higher trophic level of insect herbivores. In this study, the effects of elevated CO2 (i.e., 650 µl/L vs. ambient 400 µl/L) and fertilizer‐N (0, 50, 100, 200 kg/ha) on the population abundances and the inter‐specific competition among three co‐occurring species of wheat aphids, Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum, were studied. The grain weight per ear and the 1,000‐grain weight were generally increased when grown under elevated CO2 and showed a significant effect at the 100 kg/ha (grain weight per ear) and 0, 50 and 100 kg/ha (1,000‐grain weight) N. These two yield indexes increased with increasing fertilizer‐N levels within reasonable limits and reached a maximum at 100 kg/ha. Elevated CO2 combined with fertilizer‐N levels formed complex indirect effects on the three wheat aphids through the wheat crops they fed on. Elevated CO2 significantly decreased the niche overlap index (ab. NOI) between S. avenae and R. padi under 0 and 100 kg/ha and that between R. padi and S. graminum under 0 kg/ha, while significantly increased the three NOIs under 50 kg/ha and that between R. padi and S. graminum under 100 and 200 kg/ha. S. avenae and R. padi had the larger population and stronger competition in low‐N condition (0 and 50 kg/ha), which was harmful to wheat yield and quality when combined with its own poor nutrition. Overall, the 100 kg/ha N level was the best option based on the aphid population, competition and wheat yields. Therefore, the balanced relationship formed among fertilizers, plants and insects under 100 kg/ha N was vital for the interactive ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call