Abstract
The shape memory capabilities of Heusler alloy microwires with two different contents of Fe element instead of Ga element following step-by-step ordering heat treatment were explored based on the stoichiometric ratio of Ni2MnGa. The melt-drawing technique was used to create the polycrystalline microwires, and the two microwires had Fe atomic contents of 4.7 at.% and 5.5 at.%, respectively. The field emission scanning electron microscope was used to analyze the microwire’s surface condition as well as the microscopic tensile fracture morphology. Using an X-ray diffractometer, the microwires’ crystal structure was identified for phase analysis. Differential scanning calorimetry was used to examine the microwires’ behavior during martensitic transformation. Using a dynamic mechanical stretcher, the elongation and recovery rate of microwires’ one- and two-way shape memory behavior were examined. The findings demonstrated that the microwire phase structure, martensitic transformation behavior, and shape memory capabilities all displayed good properties after the heat treatment was ordered.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.