Abstract

The aim of this study was to assess the stiffness of each lower limb joint in healthy persons walking at varying speeds when fatigued. The study included 24 subjects (all male; age: 28.16 ± 7.10 years; height: 1.75 ± 0.04 m; weight: 70.62 ± 4.70 kg). A Vicon three-dimensional analysis system and a force plate were used to collect lower extremity kinematic and kinetic data from the participants before and after walking training under various walking situations. Least-squares linear regression equations were utilized to evaluate joint stiffness during single-leg support. Three velocities significantly affected the stiffness of the knee and hip joint (p < 0.001), with a positive correlation. However, ankle joint stiffness was significantly lower only at maximum speed (p < 0.001). Hip stiffness was significantly higher after walking training than that before training (p < 0.001). In contrast, knee stiffness after training was significantly lower than pre-training stiffness in the same walking condition (p < 0.001). Ankle stiffness differed only at maximum speed, and it was significantly higher than pre-training stiffness (p < 0.001). Walking fatigue appeared to change the mechanical properties of the joint. Remarkably, at the maximum walking velocity in exhaustion, when the load on the hip joint was significantly increased, the knee joint’s stiffness decreased, possibly leading to joint instability that results in exercise injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call