Abstract

Gut microbiota such as Faecalibacterium prausnitzii play a major role in the regulation of gut barrier, inflammation and metabolic functions. Microbiota-derived extracellular vehicles (EVs) have been recently introduced as functional units mediating the eukaryotic and prokaryotic cell-microbiota interactions. In this paper, the effect of F. prausnitzii and its EVs on mRNA expression levels of tight junction genes (ZO1 and OCLN) as well as PPARs and ANGPTL4 genes in the human epithelial colorectal adenocarcinoma (Caco-2) cell line was evaluated. F. prausnitzii was cultured on the Brain Heart Infusion (BHI) broth medium under anaerobic conditions, and its EVs were extracted by ultracentrifugation. This bacterium and its EVs were treated on the Caco-2 cells. After 24h, the expression of the genes encoding TJ proteins such as ZO1 and OCLN, PPARs and ANGPTL4 was evaluated by quantitative real-time PCR. Unlike F. prausnitzii, its EVs significantly increased the expression of ZO1 and OCLN genes, and PPARα, PPARγ and PPARβ/δ genes (except at a concentration of 100µg/ml) as well as ANGPTL4 gene. The results of this study demonstrated that F. prausnitzii-derived EVs increased the intestinal barrier permeability via TJs (ZO1 and OCLN) as well as PPAR-α, PPAR-γ and PPAR β/δ genes and their targeted gene (ANGPTL4) in the Caco-2 cell line. Accordingly, it is suggested that F. prausnitzii-derived EVs can be considered as a new bacterial postbiotic to cure dysbiosis-associated diseases including obesity and its related metabolic dysfunctions, according to the leaky gut hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call