Abstract

In order to provide the wetting processing and the design of thermal moisture comfort of fabric with micron-scaled pore size data, this paper reports on an experimental investigation on the pore size distribution of 6 kinds of fabrics with the method of seft-proposed weight-classification method. This paper focuses on the effect of fabric structure and component on the pore size distribution . Histograms reveal the relationship between various factors. For cotton fabric, the peak area of the histogram of 1/2 twill weave fabric (TWF) is wider and higher than that of plain weave fabric (PWF) due to fewer structure points and more loose structure. This leads to wicking rate increase. For the polyester fabric, the difference between the peak area shapes of the TWF and PWF is not obvious. This may arise from that smaller warp/weft density of both the samples inhibited by the change in inter-yarn gap leading to the similarity. For polyester-cotton fabric, with the increase in the ratio of hydrophilic cotton component, pore size range significantly expanded, showing more uniform wicking and capillary condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.