Abstract

Capacitative calcium entry and calcium wave propagation were studied in keratinocytes from healthy volunteers and patients with type 1 neurofibromatosis (NF1) in calcium-depleted and in low calcium culture medium. In previous studies, we found evidence that mutations of the NF1 tumor suppressor gene can lead to altered calcium-mediated cell signaling in keratinocytes cultured in the presence of a high extracellular calcium concentration. The present study demonstrated that the differences between normal and NF1 keratinocytes were dependent on extracellular calcium concentration. Specifically, when keratinocytes were exposed to thapsigargin under calcium-depleted culture conditions the subsequent increase in free intracellular calcium concentration was moderate in NF1 keratinocytes compared to controls. The finding indicates lowered endoplasmic calcium stores in NF1 which may also in part explain the reduced activation signal for capacitative calcium influx and the wound-induced intracellular Ca2+ transient observed in NF1 keratinocytes maintained in culture medium containing 0.05 mM calcium. The differences between control and NF1 keratinocytes were most pronounced when the cells were cultured in the presence of a high (1.8 mM) calcium concentration. Since elevated extracellular calcium levels induce keratinocytes to form cellular contacts and lead to terminal differentiation, markedly aberrant responses of NF1 keratinocytes in the presence of a high calcium concentration may help to explain previous findings on impaired formation of cellular junctions and differentiation in NF1 deficient cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.