Abstract

In order to determine how salinity and exposure time affect seed viability and germination, seeds of five halophytes, Atriplex prostrata, Hordeum jubatum, Salicornia europaea, Spergularia marina, and Suaeda calceoliformis were exposed to 3.0, 5.0, and 10.0% NaCl solutions for 30, 60, 90, 365, and 730 d. Recovery experiments in distilled water indicated significantly different species responses to salinity over time. Percentage germination and rate of germination in H. jubatum were dramatically reduced following extended exposure and all seeds exposed to 10% NaCl for > 1 yr failed to germinate. Spergularia marina seeds were stimulated following short‐term exposure to 3% NaCl; however, germination was delayed and overall germination was significantly reduced with exposure time in the two higher salinity levels. Percentage germination in A. prostrata decreased over time, but salinity level was not related to this reduction. Germination of S. europaea and S. calceoliformis, the most salt‐tolerant species being tested, was stimulated by exposure to high salinity. Both species had a significant increase in percentage germination and in the germination rate when compared to seeds germinated in distilled water. Baseline germination data from seeds placed in 0, 1, 2, and 3% NaCl solutions indicated that S. europaea and S. calceoliformis were the only species to germinate in the 3% NaCl solution. Spergularia marina failed to germinate in the 2% NaCl treatment, and germination of A. prostrata and H. jubatum was significantly reduced at this salinity level. It is concluded that prolonged exposure to saline solutions can inhibit or stimulate germination in certain species, and the resulting germination and recovery responses are related to the duration and intensity of their exposure to salt in their natural habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call