Abstract

Evolocumab, a PCSK-9 inhibitor, is known for its ability to reduce low-density lipoprotein cholesterol (LDL-C). This study aimed to investigate the effects of evolocumab, alone or in combination with atorvastatin, on the progression of atherosclerosis. Fifty male domestic rabbits were randomly assigned to five groups: control, high cholesterol diet, evolocumab vehicle (dimethyl sulfoxide, DMSO), evolocumab alone, and evolocumab plus atorvastatin. Serum levels of interleukin 10 (IL-10), IL-17, IL-1β, intracellular adhesion molecule (ICAM), and vascular adhesion molecule (VCAM) were measured. Toll-like receptor (TLR) expression on monocytes was evaluated using flow cytometry. Histopathological examination and measurement of intimal thickness (IT) were also conducted. The results revealed that the evolocumab produced a statistically significant (p<0.05) reduction in lipid profile at 5 weeks, with the peak effect occurring at 10 weeks. Furthermore, the inhibitor reduced TLRs at 10 weeks to 10.83±1.8 and intimal thickness to 160.66±9.45. IL-17, IL-1β, ICAM, and VCAM were significantly reduced by evolocumab treatment, with the improvement of the histopathological changes in the aortic wall. The combination of evolocumab and atorvastatin caused a more statistically significant reduction in TLRs at 10 weeks to 5.08±1.2 and intimal thickness to 121.79±5.3. IL-17, IL-1β, ICAM, and VCAM were significantly (p<0.05) reduced by the combination, and the histopathological changes in the aortic wall were significantly improved. In conclusion, evolocumab delays the progression of atherosclerosis by modulating inflammatory pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call