Abstract

e13508 Background: Pediatric and adult high-grade glioma (HGG) frequently harbor PDGFRA alterations. The CNS penetration of PDGFRA inhibitors, such as dasatinib, is limited by the tumor-efflux protein P-glycoprotein (P-gp). We hypothesized that co-treatment with everolimus, which has been shown to block P-gp, will increase CNS penetration and efficacy of dasatinib in in vitro and in vivo models as well as in human PDGFRA-driven glioma. Methods: Tumors were generated in mice using an intra-uterine electroporation (IUE) model [introduction of TP53, PDGFRA and H3K27M mutations in pre-natal cortex]. Dose response, synergism studies, P-GP inhibition and pharmacodynamics/pharmacokinetic studies were then performed on in vitro and in vivo models employing this IUE system. A phase 2 trial employing dasatinib and everolimus was established for children with HGG and diffuse intrinsic pontine glioma (DIPG) that contain PDGFRA alterations (NCT03352427). Paired CSF/plasma samples (before and after addition of everolimus) were collected from enrolled patients. Results: Dasatinib effectively treated mouse HGG cells with an IC50 of 100 nM. Dose-dependent reduction in PDGFRA and pPDGFRA was found. P-gp inhibitor assay confirmed that everolimus strongly blocks P-gp activity at 1 uM (p = 0.0028 vs untreated). Mice treated with dasatinib and everolimus had extended survival as compared to control. Two-hour exposure to everolimus resulted in sub-IC50 dasatinib concentration in cortex (23 nM) and tumor (65 nM). 24-hour exposure to everolimus resulted in greater cortex (235 nM) and tumor (509 nM) concentrations. Two trial patients, recurrent HGG ( PDGFRA-amplified) and recurrent DIPG ( PDGFRA D842V) respectively, survived 6 months and 9 months (ongoing) after progression, which compares very favorably to historical controls. A paired CSF sample from the PDGFRA-amplified patient showed a 50% increase in CSF dasatinib level after addition of everolimus. Conclusions: Dasatinib treatment of PDGFRA-driven HGG is improved with everolimus blockade of P-gp and represents a novel route for improving CNS penetration and efficacy of therapies for HGG. Clinical trial information: NCT03352427.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call