Abstract

Ribosomes from Gram-negative bacteria such as Escherichia coli exhibit non-specific translation of bacterial mRNAs. That is, they are able to translate mRNAs from a variety of sources in a manner independent of the "strength" of the Shine-Dalgarno region, in contrast to ribosomes from many Gram-positive bacteria, such as Bacillus subtilis, which show specific translation in only being able to translate other Gram-positive mRNA, or mRNAs that have "strong" Shine-Dalgarno regions. There is an evolutionary correlation between the translational specificity and the absence of a protein analogous to E. coli ribosomal protein S1. The specificity observed with B. subtilis ribosomes is a function of their 30 S subunit which lacks S1; translation of Gram-negative mRNA can occur with heterologous ribosomes containing the 30 S subunit of E. coli ribosomes and the 50 S subunit of B. subtilis ribosomes. However, the addition of E. coli S1 alone to B. subtilis ribosome does not overcome their characteristic inability to translate mRNA from Gram-negative organisms. By contrast, the removal of S1 from E. coli ribosomes results in translational behavior similar to that shown by B. subtilis ribosomes in that the S1-depleted E. coli ribosomes can translate mRNA from Gram-positive sources in the absence of added S1, although addition of S1 stimulates further translation of such mRNAs by the E. coli ribosomes.

Highlights

  • Ribosomesfrom Gram-negative bacteria such as Escherichia coli exhibit non-specific translation of bacterial mRNAs

  • The specificity observed with B. subtilis ribosomes is a function of their 30 S subunit which lacks S1; translation of Gram-negative mRNA can occur with heterologous ribosomes containing the 30 S subunit of E. coli ribosomes and the 50 S subunit ofB . subtilis ribosomes

  • This is in contrast to the control ribosomes from E. coli and Azotobacter uinelandii, both of which contained ahighmolecular massprotein (81 and 78 kDa, Occurrence of ribosomal protein SI in bacteria respectively) that reacts with S1 antiserum

Read more

Summary

Introduction

Ribosomesfrom Gram-negative bacteria such as Escherichia coli exhibit non-specific translation of bacterial mRNAs. The specificity observed with B. subtilis ribosomes is a function of their 30 S subunit which lacks S1; translation of Gram-negative mRNA can occur with heterologous ribosomes containing the 30 S subunit of E. coli ribosomes and the 50 S subunit ofB .

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call