Abstract

Abstract The interfacial behavior of a Wilmington crude oil was studied as part of our investigations of enhanced oil recovery by weakly alkaline solutions. For some systems, the spinning drop apparatus can be used to measure transient interfacial tension (IFT) effects, coalescence times of oil drops, and film rigidity simultaneously, for rapid screening of chemical slug composition for the potential of improving oil recovery by the mechanisms of oil mobilization and oil bank formation. The experimental results presented include the effects of temperature, surface age, salinity, added surfactant, and polymer on coalescence time, film rigidity, and IFT behavior. Oil displacement tests were performed using surfactant-enhanced bicarbonate solutions formulated for improved mobility control and for improved oil mobilization and oil drop coalescence. The most significant result of this work was that we were able to measure the dynamics in IFT between 2 coalescing oil drops as perturbations in the equilibrium concentration of surfactant at the interface occurred during film drainage. The accuracy of the technique for measuring IFT and film rigidity improved as the contact radii between the oil drops increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call