Abstract

AbstractThe response of bees to changing environmental temperatures has implications for pollination in natural and agricultural systems, with rising average temperatures and increased environmental stochasticity predicted to cause pollinator population declines. A growing body of evidence for the role of native bees in crop pollination suggests that understanding the temperatures at which bees are active is important for maintaining agricultural productivity under climate change. This study used two methods to sample bees at strawberry farms in south‐eastern Australia, matching activity observations with microclimate temperature to understand how temperature impacts bee activity. Apart from Apis mellifera (introduced), two native bees were identified, Lasioglossum spp. and Exoneura robusta. Apis mellifera was the most abundant species across all environmental temperatures, and E. robusta the least. Visual and sweep‐netting survey results found activity temperature range was broader for A. mellifera (16.21–41.05°C) than Lasioglossum (16.49–38.91°C) and E. robusta (26–38.82°C). The results suggest that activity temperature varies among bee species, with potential implications for community composition and plant pollination under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.