Abstract

BackgroundAntarctic terrestrial vegetation is subject to one of the most extreme climates on Earth. Currently, parts of Antarctica are one of the fastest warming regions on the planet. During 3 growing seasons, we investigated the effect of experimental warming on the diversity and abundance of coastal plant communities in the Maritime Antarctic region (cryptogams only) and the Falkland Islands (vascular plants only). We compared communities from the Falkland Islands (51°S, mean annual temperature 7.9°C), with those of Signy Island (60°S, -2.1°C) and Anchorage Island (67°S, -2.6°C), and experimental temperature manipulations at each of the three islands using Open Top Chambers (OTCs).ResultsDespite the strong difference in plant growth form dominance between the Falkland Islands and the Maritime Antarctic, communities across the gradient did not differ in total diversity and species number.During the summer months, the experimental temperature increase at 5 cm height in the vegetation was similar between the locations (0.7°C across the study). In general, the response to this experimental warming was low. Total lichen cover showed a non-significant decreasing trend at Signy Island (p < 0.06). In the grass community at the Falkland Islands total vegetation cover decreased more in the OTCs than in adjacent control plots, and two species disappeared within the OTCs after only two years. This was most likely a combined consequence of a previous dry summer and the increase in temperature caused by the OTCs.ConclusionThese results suggest that small temperature increases may rapidly lead to decreased soil moisture, resulting in more stressful conditions for plants. The more open plant communities (grass and lichen) appeared more negatively affected by such changes than dense communities (dwarf shrub and moss).

Highlights

  • Antarctic terrestrial vegetation is subject to one of the most extreme climates on Earth

  • These results suggest that small temperature increases may rapidly lead to decreased soil moisture, resulting in more stressful conditions for plants

  • Due to the harsh climate, Antarctic vegetation mainly consists of cryptogams and there are only two vascular plant species (Deschampsia antarctica and Colobanthus quitensis)

Read more

Summary

Introduction

Antarctic terrestrial vegetation is subject to one of the most extreme climates on Earth. During 3 growing seasons, we investigated the effect of experimental warming on the diversity and abundance of coastal plant communities in the Maritime Antarctic region (cryptogams only) and the Falkland Islands (vascular plants only). Plant growth is largely limited to the coastal areas of the sub- and maritime-Antarctic regions. In these regions, there are small areas where vascular plants and cryptogams (mosses and lichens) can grow due to the summer melt of snow and ice. Due to the harsh climate, Antarctic vegetation mainly consists of cryptogams and there are only two vascular plant species (Deschampsia antarctica and Colobanthus quitensis). The warming trends along the Antarctic Peninsula are not constant throughout the year, with higher increases during winter than during the summer [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call