Abstract

The interaction of a water molecule with the (111) surfaces of stoichiometric and reduced ceria is investigated using first principle density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U). It is found that on the stoichiometric ceria(111) surface, the water molecule is adsorbed spontaneously through single hydrogen bond configuration. In contrast, on the lightly reduced ceria(111), there exist both molecular adsorption (no-H-bond configuration) and dissociative adsorption (surface hydroxyl) modes. It is obvious that oxygen vacancies can enhance the interaction of water with the substrate. Phase diagrams for stoichiometric and reduced ceria(111) surfaces in equilibrium with water vapor in the complete range of experimentally accessible gas phase condition are calculated and discussed combining the DFT results and thermodynamics data using the ab initio atomistic thermodynamic method. We present a detailed analysis of the stability of the water−ceria system as a function of the ambient conditions, and focus on two important surface processes for water adsorption on the stoichiometric and on the lightly reduced surfaces, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.