Abstract

Changes in age structure, spatial distribution and intraspecific interactions across environmental gradients often reflect adaptations of plant populations to their environment. Our study explored the growth status of the Picea schrenkiana population on the north slope of the eastern Tianshan Mountains and tested the stress gradient hypothesis (SGH) against changes in the age structure and spatial pattern of P. schrenkiana populations along the environmental gradient. We sampled the forests at eight elevational locations, comprising a total of 24 plots of 30 × 30 m area from 1800 to 2500 m a.s.l. in the Jiangbulake region. By scanning the 3D structure of the forests and sampling tree rings in each plot, we precisely determined the spatial location and diameter of the breast height (DBH) of each P. schrenkiana individual. By fitting the DBH-age power model and g(r) function of the point pattern, we examined the age structure, spatial patterning and intraspecific interactions of local P. schrenkiana populations within each plot and their correlation with habitat parameters. The results indicate that (1) juveniles dominate the overall population density, age structure and spatial patterning of the P. schrenkiana population. Trees of low–middle elevations represent younger forests with faster growth and better regeneration, while trees at high elevations form older forests with slower growth and poorer regeneration. (2) The aggregated population patterns and positive intraspecific interactions occur mostly at medium elevations (2000 and 2100 m a.s.l.). (3) Population density, aggregation intensity and intraspecific interaction strength are strongly and positively correlated (p < 0.01). Our results did not fit the SGH but support a hump-shaped hypothesis that proposes that facilitation is stronger under medium stress along the elevational gradient. This study validates the spatial point pattern testing of the SGH of different types. We recommend the implementation of more intensive forest closure measures, together with a reduction in the harvesting intensity of trees to ensure the sustainable regeneration of P. schrenkiana forests in the eastern Tianshan Mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call