Abstract

Vascular permeability is a proof of vascular endothelial cell dysfunction induced by diabetes. Vascular permeability is directly related to the width of intercellular endothelial cells junctions, which may become permeable to macromolecules as a result of a change in endothelial cell shape. To determine the role of hyperglycemia in endothelial cell shape, the study examined the effect of high concentrations of glucose on the shape of cultured rat heart endothelial cells. This result indicated that the high-glucose-induced changes in the morphology of endothelial cells, via the glucose-mediated reorganization of F-actin. In endothelial cells, the actin cytoskeleton is tethered to the zonula adherens and focal adhesions, which mediate cell-cell and cell-matrix interactions respectively. The present study demonstrated that the high-glucose-induced changes in the actin-binding protein such as filamin, zonula adherens proteins such as α-, β-, and γ-catenin, focal adhesions proteins such as focal adhesion kinase, paxillin, and tyrosine phosphorylation of paxillin. It appears that differences in expression of adherens junctions molecules on rat heart endothelial cells in response to high glucose reflect endothelial glucose toxicity, which may also induce endothelial dysfunction in diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call