Abstract
1.5D particle-in-cell simulations of a hot, low density electron beam injected into magnetized, maxwellian plasma were used to further explore the alternative non-gyrotropic beam driven electromagnetic (EM) emission mechanism, first studied in Tsiklauri, Phys. Plasmas 18, 052903 (2011). Variation of beam injection angle and background density gradient showed that the emission process is caused by the perpendicular component of the beam injection current, whereas the parallel component only produces Langmuir waves, which play no role in the generation of EM waves in our mechanism. Particular emphasis was put on the case, where the beam is injected perpendicularly to the background magnetic field, as this turned off any electrostatic wave generation along the field and left a purely electromagnetic signal in the perpendicular components. The simulations establish the following key findings: (i) Initially, waves at a few ωce/γ are excited, mode converted and emitted at ≈ωpe (ii) The emission intensity along the beam axis is proportional to the respective component of the kinetic energy of the beam; (iii) The frequency of the escaping EM emission is independent of the injection angle; (iv) A stronger background density gradient causes earlier emission; (v) The beam electron distribution function in phase space shows harmonic oscillation in the perpendicular components at the relativistic gyrofrequency; (vi) The requirement for cyclotron maser emission, ∂f∂v⊥>0, is fulfilled; (vii) The degree of linear polarization of the emission is strongly dependent on the beam injection angle; (viii) The generated electromagnetic emission is left-hand elliptically polarized as the pitch angle tends to 90°; and (ix) The generated electromagnetic energy is of the order of 0.1% of the initial beam kinetic energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.