Abstract

Propofol is commonly used to sedate patients after traumatic brain injury. However, the dose-dependent neuroprotective effects of propofol after head trauma are unknown. We compared histopathological damage after 6 h of electroencephalogram-targeted high- and low-dose propofol infusion in rats subjected to controlled cortical impact (CCI). Animals were randomly assigned to CCI/propofol with electroencephalogram burst-suppression-ratio 1%-5% (CCI/lowprop), CCI/propofol with burst-suppression-ratio 30%-40% (CCI/highprop), control group CCI/1.0 vol % halothane (CCI/halo), or sham group with halothane anesthesia (SHAM/halo). Brain slices were stained with kresyl violet (KV) and hematoxylin/eosin (HE) to evaluate lesion volume, number of eosinophilic cells, and activation of caspase-3 in the hippocampus. Lesion volume (mm3) and number of eosinophilic cells in the hippocampus did not differ significantly [lesion volumes: CCI/lowprop 31.55 +/- 14.66 (KV) and 53.77 +/- 8.62 (HE); CCI/highprop 33.81 +/- 10.57 (KV) and 52.30 +/- 11.55 (HE); CCI/halo 36.42 +/- 17.06 (KV) and 57.95 +/- 8.49 (HE)]. Activation of caspase-3 occurred in the ipsilateral hippocampus in all CCI-groups. Despite different levels of cortical neuronal function, there were no relevant differences in the short-term histopathological damage. These results challenge the view that the neuroprotective effect of propofol relates to the suppression of cerebral metabolic demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call