Abstract

Carbon nanomaterials were synthesized by using the solution plasma process and the carbon structure was precisely controlled through adjusting electrode gap distances. Transmission electron microscope and diffraction images showed ordered graphitic layers and clear ring patterns when the electrode distance was wider. The measurement of conductive properties has been improved approximately 400 times from 19 k Ω cm to 47 Ω cm, and the C/H ratio from the result of elemental analysis decreased from 0.31 to 0.18 with decreasing resistivity of carbon. These results showed that the electrode distance was an important factor to control the energy input during the synthesis of carbon materials in the plasma/gas zone generated by solution plasma processing and strongly affect the properties of synthesized carbon materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.