Abstract

Recently, electrically driven conducting polymer (CP) coated yarns have shown great promise to develop soft wearable applications because of their electrical and mechanical behaviour. However, designing a suitable yarn actuator for textile-based wearables with high strain is challenging. One reason for the low strain is the voltage drop along the yarn, which results in only a part of the yarn being active. To understand the voltage drop mechanism and overcome this issue intrinsically conductive yarns were used to create a highly conductive path along the full length of the yarn actuator. Ag plated knit-de-knit (Ag-KDK) structured polyamide yarns were used as the intrinsically conductive core material of the CP yarn actuators and compared with CP yarn actuators made of a non-conductive core knit-de-knit (KDK) yarn. The CP yarn actuators were fabricated by coating the core yarns with poly(3,4-ethylene dioxythiophene): poly(styrene sulfonic acid) followed by electrochemical polymerization of polypyrrole. Furthermore, to elucidate the effect of the capillarity of the electrolyte through the yarn actuator, two different approaches to electrochemical actuation were applied. All actuating performance of the materials were investigated and quantified in terms of both isotonic displacement and isometric developed forces. The resultant electroactive yarn exhibits high strain (0.64 %) in NaDBS electrolytes as compared to previous CP yarn actuator. The actuation and the electroactivity of the yarn were retained up to 100 cycles. The new highly conductive yarns will shed light on the development of next-generation textile-based exoskeleton suits, assistive devices, wearables, and haptics garments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call