Abstract

Many industrial processes such as electrostatic separation, fluidization, and coating rely upon induction charging of fine particles. This paper considers the effects of electric field strength on the magnitude of the induction charge on freely levitating particles. The charging time and charge on a freely levitating particle depend on a number of properties, mainly the electric field strength, particle size, density, and resistivity. A charging model showing the dependence upon the electric field strength is presented and analyzed, along with a model of the levitation process. A high-speed digital imaging system was used to measure individual particle motion during levitation. Using these data along with the developed models, it was possible to determine the charge on the particle. Semiconductive particles with a mass mean diameter (MMD) of 156 /spl mu/m were used in these experiments and tested at electric fields of 6.8, 8.5, 15, and 21 kV/cm, respectively. In addition, some experiments using particles 97-/spl mu/m and 412-/spl mu/m MMD at an electric field of 15 kV/cm were carried out to confirm the results obtained for the 156-/spl mu/m particles. It was found that the particle charge was dependent upon both the charging time and electric field strength. In particular, for high electric fields the particle did not achieve its saturation charge before liftoff occurred. This shows that higher electric field strength is not necessarily the optimum condition for levitation of semiconductive particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.