Abstract

Low soil temperatures, common during the growing season in northern forests, have the potential to impede plant growth. In this study, water uptake, water relations, and growth characteristics were examined in aspen (Populus tremuloides) and white spruce (Picea glauca) seedlings that were inoculated with ectomycorrhizal fungi and grown at 20°C daytime air temperatures and low soil temperatures of 4°C and 8°C. Mycorrhizal associations had little effect on root and shoot biomass at both soil temperatures. Root hydraulic conductance (Kr) was higher in both mycorrhizal plant species compared to nonmycorrhizal plants, but there was no soil temperature effect on Kr in either species. Mycorrhizae also increased shoot water potential (Ψw) in Populus tremuloides but had no effect on Ψw in Picea glauca. The increases in Kr and Ψw were not reflected by changes in stomatal conductance (gs) and transpiration rates (E), suggesting that the reduction of water flow in seedlings exposed to low soil temperature was not likely the factor limiting gs in both plant species.Key words: boreal forest, root hydraulic conductance, root growth, stomatal conductance, water uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call