Abstract

In this article, the authors discuss the results of studies into the processing of Ti-5Al-5Mo-5V-1Cr-1Fe near-β titanium alloy (Ti-55511) by electron beam melting (EBM), an additive manufacturing technique. Due to its high flexibility in shaping mechanical properties, Ti-55511 alloy is commonly used in aircraft components such as landing gear or airframes. In this study, Ti-55511 powder was used and its properties were described as regards chemical composition and particle size distribution in order to assess its suitability for EBM processing and repeatability of results. 20 sets of processing parameters were tested in the energy input range between 10 J/mm3 and 50 J/mm3 (cathode current, 4.5 mA-19.5 mA; scanning speed, 1080 mm/s–23400 mm/s). Four types of top surfaces were obtained, namely, flat, orange peel, with single pores, and with swelling. Best results were obtained for the energy of 30 J/mm3: flat top surface and relative density in excess of 99.9%. Analysis of chemical composition showed that aluminum loss was below the specification minimum for the analyzed parameter sets. Scanning speed most significantly affected aluminum content: the lower the scanning speed, the higher the aluminum loss. Analysis of microstructures showed the dependence of lamellar α-phase volume fraction on the process parameters used. For low scanning speed, the determined α-phase volume accounted for about 78%. Higher scanning speed resulted in a decrease of the α-phase content to 61%. The dimensions of the lamellas and the amount of the α-phase strongly effected hardness results (360 HV to 430 HV).

Highlights

  • Titanium alloys are widely used in the aerospace, chemical, and medical industries due to their high relative strength and corrosion resistance

  • The test results indicate that electron beam melting (EBM) technique can be successfully applied to process one of the Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) near-β titanium alloys

  • The highest quality specimens with relative density in excess of 99.9% and flat surfaces are obtained with energy density of 30 J/mm3, regardless of the corresponding cathode current and scanning speed settings

Read more

Summary

Introduction

Titanium alloys are widely used in the aerospace, chemical, and medical industries due to their high relative strength and corrosion resistance. Ti-5Al-5Mo-5V-1Cr-1Fe alloy (Ti-55511) is a near-β alloy consisting of the α- and β-phases It is used, among others, to manufacture parts exposed to high mechanical loads such as landing gear components, components of low-pressure compressor blades and fuel systems [1]. Ti-55511 alloy has high strength (1100-1260 MPa) and high fracture toughness (66-77 MPa·m0.5). Tensile strength, ductility, and fatigue properties of the alloy can be modified by thermomechanical treatment [5,6,7]. This makes it possible to produce various types of the alloy microstructure, i.e., bimodal, equiaxed, or Widmanstätten type [8, 9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call