Abstract

The objective of this study was to assess the effect of harvesting time on the fermentation characteristics, chemical composition, and microbial community of king grass silage. King grass was harvested at three growth periods of 90 days (KN90S), 110 days (KN110S), and 130 days (KN130S); chopped into 2–3-cm particle size; and ensiled in polyethylene bags (20 × 30 cm). The fermentation quality and chemical composition of silages were analyzed after 1, 3, 7, 14, 30, and 60 days of ensiling. Bacterial community of silage ensiled for 60 days was profiled using next generation sequencing (NGS) technology. The KN110S showed the most extensive lactic acid (LA) fermentation during 7 days of fermentation compared to KN90S and KN130S. After 60 days of fermentation, the KN110S showed the lowest pH and the highest lactic acid content among the three treatments. The butyric acid and ammonia nitrogen contents of KN90S and KN130S were significantly greater than those of KN110S (p < 0.05). After a timespan of 60 days of ensiling, the bacterial community of king grass silage was predominantly populated by Proteobacteria in phylum level, whereas unclassified Enterobacteriaceae genus remained dominant in all silages. A higher relative abundance of Clostridium was observed in KN90S and KN130S, but not in KN110S, and greater abundance of Lactococcus appeared in KN110S and KN130S silages than KN90S. It is concluded that harvesting time had an important effect on the fermentation quality and microbial community of king grass silage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call