Abstract

Core Ideas We provide detailed analysis of various forms of the dynamic capillarity coefficient. We focus on the region of saturation overshoot at larger saturation. The results are evaluated with the aid of experimental observations. Gravity‐driven fingering has been observed during downward infiltration of water into dry sand. Moreover, the water saturation profile within each finger is non‐monotonic, with a saturation overshoot at the finger tip. As reported in the literature, these effects can be simulated by an extended form of the Richards equation, where a dynamic capillarity term is included. The coefficient of proportionality is called the dynamic capillarity coefficient. The dynamic capillarity coefficient may depend on saturation. However, there is no consensus on the form of this dependence. We provide a detailed traveling wave analysis of four distinctly different functional forms of the dynamic capillarity coefficient. In some forms, the coefficient increases with increasing saturation, and in some forms, it decreases. For each form, we have found an explicit expression for the maximum value of saturation in the overshoot region. In current formulations of dynamic capillarity, if the value of the capillarity coefficient is large, the value of saturation in the overshoot region may exceed unity, which is obviously nonphysical. So, we have been able to ensure boundedness of saturation regardless of the value of the dynamic capillarity coefficient by extending the capillary pressure–saturation relationship. Finally, we provide a qualitative comparison of the results of traveling wave analysis with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.