Abstract

The effect of the molecular structure of dyes Eriochrome Black T and Bromophenol Blue on their adsorption on the surface of activated carbon manufactured from locally available biosorbent has been studied. Batch experiments were performed to investigate factors that may affect the adsorption process. The effect of stirring rate was investigated in the range 0–240 rpm, with an initial concentration of 4–100 mg/l and a stirring time of 0–400 min. The mechanism and rate of adsorption were investigated for both dyes using pseudo‐first‐order, pseudo‐second‐order, intraparticle diffusion, and liquid film diffusion models. The monolayer adsorption capacities for Eriochrome Black T and Bromophenol Blue were found to be 36.5 and 39.68 mg/g respectively. The difference in dye uptake was attributed to the presence of the electron‐withdrawing bromine group in Bromophenol Blue. Results showed that the Langmuir isotherm best fitted the adsorption of the two dyes on the prepared activated carbon. The pseudo‐second‐order model best fitted the experimental data, and liquid film diffusion and intraparticle diffusion were the controlling adsorption mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.