Abstract

Exploring crack growth behaviour is needed to establish accurate fatigue life predictions. Cracked specimens were tested under strain-controlled out-of-phase thermomechanical fatigue conditions. The tests included dwell times and three different minimum temperatures. Higher minimum temperature gave faster crack growth rates while the additions of dwell times showed no effects. Crack closure was observed in all the tests where the addition of dwell times and change in minimum temperature displayed little to no effect on crack closure stresses. Finite element models with a sharp stationary crack and material parameters switching provided acceptable predictions for the maximum, minimum, and crack closure stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.