Abstract

Few studies have explored the kinetics of performance and perceived fatigability during high-intensity interval training, despite its popularity. We aimed to characterize the kinetics of fatigability and recovery during an 8 × 4-min HIIT protocol, hypothesizing that most muscle function impairment would occur during the initial four intervals. Fifteen healthy males and females (mean ± standard deviation; age = 26 ± 5 years, V̇O2max = 46.8 ± 6.1 mL·kg-1·min-1) completed eight, 4-min intervals at 105% of critical power with 3 min of rest. Maximal voluntary knee extension contractions (MVCs) coupled with electrical nerve stimulation were performed at baseline and after the first, fourth, and eighth intervals. MVC, potentiated twitch force (Pt), and Db10:100 ratio all declined throughout HIIT (p < 0.05). MVC sharply declined after interval 1 (-15 ± 9% relative to baseline; p < 0.05) and had only further declined after interval 8 (-26 ± 11%; p < 0.05), but not interval 4 (-19 ± 13%; p > 0.05). Pt and Db10:100 also sharply declined after interval 1 (Pt: -18 ± 13%, Db10:100: -14 ± 20%; p < 0.05) and further declined after interval 4 (Pt: -35 ± 19%, Db10:100: -30 ± 20%; p < 0.05) but not interval 8 (Pt: -41 ± 19%; Db10:100: -32 ± 18%; p > 0.05). Voluntary activation did not significantly change across the HIIT protocol (p > 0.05). Evoked force recovery was significantly blunted as more intervals were completed: after interval 1, Pt recovered by 7 ± 11% compared to -6 ± 7% recovery after interval 8 (p < 0.05). Ratings of perceived effort, fatigue, and leg pain rose throughout the session (p < 0.05 for each) and were greater (effort and fatigue) for females (p < 0.05). Otherwise, males and females exhibited similar performance fatigability kinetics, with contractile function declines blunted in response to additional intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call