Abstract

BackgroundThe primary objective was to determine whether consumption of conjugated linoleic acids (CLAs) affected the fecal microbiota composition, fecal enzyme activity or fecal composition.MethodsHuman subjects consumed (1 L/day) cows' milk (4% fat) containing (5 mg/g fat) cis-9, trans-11 CLA (CONT), (32 mg/g fat) cis-9, trans-11 CLA (NAT) and (32 mg/g fat) trans-10, cis-12 CLA and cis-9, trans-11 CLA (SYN) for 8 weeks, in addition to their normal diet. Milk feeding periods were separated by 4 week washout periods. Fecal samples were obtained at the beginning (day 0) and the end (day 56) of each milk feeding period. Fecal samples were analysed for microbiological profile, enzyme activity, pH and short chain fatty acid content.ResultsSamples taken at day 0 and day 56 indicated that the numbers of lactobacilli and bifidobacteria significantly decreased after consumption of all experimental milks; total aerobes, total anaerobes, enterobacteria, and enterococci + streptococci did not change. At day 56, the activities of β-glucosidase, nitroreductase, and urease enzymes had decreased compared to samples taken on day 0 for all treatments. β-glucuronidase activity did not change. Fecal pH and ammonia content did not change.ConclusionIt was concluded that observed changes could have been attributed to increased milk intake; no differences could be attributed to consumption of the different CLAs.

Highlights

  • The primary objective was to determine whether consumption of conjugated linoleic acids (CLAs) affected the fecal microbiota composition, fecal enzyme activity or fecal composition

  • A variety of positional and geometrical isomers of linoleic acid are included in the general term conjugated linoleic acids (CLAs)

  • Rumen bacteria produce CLAs [1,2] from dietary linoleic acid, and as a result, red meats and dairy products are the main sources of cis-9, trans-11 CLA in the human diet

Read more

Summary

Introduction

The primary objective was to determine whether consumption of conjugated linoleic acids (CLAs) affected the fecal microbiota composition, fecal enzyme activity or fecal composition. A variety of positional and geometrical isomers of linoleic acid are included in the general term conjugated linoleic acids (CLAs). Rumen bacteria produce CLAs [1,2] from dietary linoleic acid, and as a result, red meats and dairy products are the main sources of cis-9, trans-11 CLA in the human diet.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.