Abstract

Dissolved oxygen (DO) concentration is regarded as one of the crucial factors to influence partial nitrification process. However, achieving and keeping stable partial nitrification under different DO concentrations were widely reported. The mechanism of DO concentration influencing partial nitrification is still unclear. Therefore, in this study two same sequencing batch reactors (SBRs) cultivated same seeding sludge were built up with real-time control strategy. Different DO concentrations were controlled in SBRs to explore the effect of DO concentration on the long-term stability of partial nitrification process at room temperature. It was discovered that ammonium oxidation rate (AOR) was inhibited when DO concentration decreased from 2.5 to 0.5 mg/L. The abundance of Nitrospira increased from 1011.5 to 1013.7 copies/g DNA, and its relative percentage increased from 0.056% to 3.2% during 190 operational cycles, causing partial nitrification gradually turning into complete nitrification process. However, when DO was 2.5 mg/L the abundance of Nitrospira was stable and AOB was always kept at 1010.7 copies/g DNA. High AOR was maintained, and stable partial nitrification process was kept. Ammonia oxidizing bacteria (AOB) activity was significantly higher than nitrite oxidizing bacteria (NOB) activity at DO of 2.5 mg/L, which was crucial to maintain excellent nitrite accumulation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.