Abstract

Endocrine-disrupting chemicals (EDCs) that exist in the aquatic system bring severe environmental risks. In this study, we investigate the dissolved organic matter (DOM) effect on the release and distribution of EDCs under varied hydrodynamic conditions. A water chamber mesocosm was designed to simulate the hydrodynamic forces in a shallow lake. The contents of bisphenol A (BPA) and nonylphenol (NP) in colloid-bound and soluble phases were measured under four increasing hydrodynamic intensities that were 5%, 20%, 50%, and 80% of the critical shear stress. The total BPA and NP contents in overlying water grew linearly with the hydrodynamic intensity (R2 = 0.997 and 0.987), from 108.28 to 415.92 ng/L of BPA and 87.73 to 255.52 ng/L of NP. The exponential relationships of EDC content and hydrodynamic intensity in soluble phase (R2 = 0.985 of BPA and 0.987 of NP) and colloid phase (R2 = 0.992 of BPA and 0.995 of NP) were also detected. The DOM concentrations in colloid-bound phase (cDOM) and in soluble phase (sDOM) were measured and the linear relationships with BPA content (R2 = 0.967 of cDOM and 0.989 of sDOM) and NP content (R2 = 0.978 of cDOM and 0.965 of sDOM) were detected. We analyzed the ratio (αDOM) of sDOM and cDOM that grew logarithmically with the hydrodynamic intensity (R2 = 0.999). Moreover, the ratio (αEDCs) of BPA and NP contents in soluble and colloid-bound phases varied differently with αDOM. The results suggested that BPA tended to be in the soluble phase and NP tended to be in the colloid-bound phase due to the increasing value of αDOM.

Highlights

  • Endocrine-disrupting chemicals (EDCs) are extensively used in plastics, detergent, and electronic equipment, resulting in wide detection of EDC residues in the environment [1]

  • We aim to investigate the effect of dissolved organic matter (DOM) on the phase distribution and transportation of bisphenol A (BPA) and NP under different hydrodynamic forces in an aquatic system

  • Since our study focused on the DOM effect, the effect of EDCs in phase should be phase eliminated

Read more

Summary

Introduction

Endocrine-disrupting chemicals (EDCs) are extensively used in plastics, detergent, and electronic equipment, resulting in wide detection of EDC residues in the environment [1]. As EDCs can disrupt the human endocrine system, large discharges of anthropogenic EDCs (such as bisphenol A (BPA). Nonylphenol (NP) into natural water bodies through municipal wastewater emission bring severe. Res. Public Health 2019, 16, 1724; doi:10.3390/ijerph16101724 www.mdpi.com/journal/ijerph

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.