Abstract
A three-dimensional, semi-empirical dynamic model of the neutral thermosphere is used to examine the effect of the displaced geomagnetic and geographic poles on the daily variation of neutral gas motion. The global-scale pressure distribution to drive the neutral gas motion is derived from the empirical model of Jacchia (1965). The ionization distribution is obtained from the Pennsylvania State M.K 1 model ionosphere using the first few longitudinal Fourier coefficients of the ionization distribution. The calculations were made at various latitudes at equinox and solstice and for various values of solar activity. The results show that the calculated neutral winds for the case where the geomagnetic and geographic poles are coincident differ at most only a few per cent from the winds calculated assuming the poles displaced. With the poles coincident, longitude and local time are interchangeable, and one dimension in any dynamic model of the thermosphere may be eliminated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.