Abstract

Polymer composites are currently suggested for use as improved dielectric materials in many applications. Here, the effect of particle size and dispersion on the electrical properties of composites of rutile TiO2 and poly(styrene–ethylene–butadiene–styrene) (SEBS) are investigated. Both 15 and 300 nm particles are mixed with SEBS, with amounts of sorbitan monopalmitate surfactant from 0 to 3.3 vol%, and their dielectric and mechanical properties are measured. Composites with the 300 nm TiO2 particles result in increases of 170% in relative permittivity over the pure polymer, far above those predicted by standard theories, such as Bruggeman (140%) and Yamada (114%), and improving dispersion with surfactant has little effect. The composites with 15 nm particles showed surprisingly large relative permittivity increases (350%), but improving the dispersion by the addition of any surfactant causes the relative permittivity to decrease to 240% of the pure polymer value. We suggest that the increase is due to the formation of a highly conductive layer in the polymer around the TiO2 particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.