Abstract

The stacking fault energy plays a significant role in defining the type of plasticity mechanism which prevails in high-Mn steels. Therefore, a detailed understanding and control over the physical mechanisms that influence the stacking fault energies is crucial for effective design and optimization of such steels. We present results of a first principle study on the influence of the chemical and magnetic ordering on the composition dependence of stacking fault energies in austenitic Fe1-xMnx alloys, which are prototypes for high-Mn steels. Our calculations show that chemical ordering has a significant influence on the intrinsic stacking faults. We have further demonstrated that, although FeMn-alloys have zero net magnetization, the internal magnetic structure significantly changes the properties of the stacking faults. Specifically, we have shown for chemically disordered structures that the dependence of the equilibrium volume and of the SFE on their composition is strongly changed if they are under paramagnetic instead of non-magnetic exposure. These results prove the importance of atomistic simulations for the determination of the SFE and clearly indicate that the magnetic interactions and the chemical ordering in this system must be accurately captured by the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.