Abstract

ABSTRACTThe interaction between the dimer structure of ibuprofen drug (D-IB) and calf thymus DNA under simulative physiological conditions was investigated with the use of Hoechst 33258 and methylene blue dye as spectral probes by the methods of UV-visible absorption, fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling study.Using the Job's plot, a single class of binding sites for theD-IB on DNA was put in evidence. The Stern–Volmer analysis of fluorescence quenching data shows the presence of both the static and dynamic quenching mechanisms. The binding constants, Kb were calculated at different temperatures, and the thermodynamic parameters ∆G∘, ∆H∘ and ∆S∘ were given. The experimental results showed that D-IB molecules could bind with DNA via groove binding mode as evidenced by: I. DNA binding constant from spectrophotometric studies of the interaction of D-IB with DNA is comparable to groove binding drugs. II. Competitive fluorimetric studies with Hoechst 33258 have shown that D-IB exhibits the ability of this complex to displace with DNA-bounded Hoechst, indicating that it binds to DNA in strong competition with Hoechst for the groove binding. III. There is no significantly change in the absorption of the MB-DNA system upon adding the D-IB, indicates that MB molecules are not released from the DNA helix after addition of the D-IB and are indicative of a non-intercalative mode of binding. IV. Small changes in DNA viscosity in the presence of D-IB, indicating weak link to DNA, which is consistent with DNA groove binding. As well as, induced CD spectral changes, and the docking results revealed that groove mechanism is followed by D-IB to bind with DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.