Abstract

The diluent gas used in the preparation of test fuel/oxygen mixtures is inert and does not take part in the chemical reaction. However, it does have an effect on the measured ignition delay time both in rapid compression machines and in shock tubes—argon decelerates ignition in the RCM, but accelerates it in the shock tube under some conditions. This opposite effect is due to the times scales involved in these experimental devices. Typical ignition delay times in the RCM are in the region of 1–200 ms, while those in the shock tube are much shorter (10–1000 μs). Comparative RCM experiments and simulations for helium, argon, xenon, and nitrogen have shown extreme heat loss in the postcompression period, particularly for helium. Autoignition measurements of 2,3-dimethylpentane have highlighted a direct dependency of ignition delay time on the type of diluent used, where longer ignition delay time were recorded with argon. This increased ignition delay time is due to the extreme cooling of argon in the postcompression period. This observation was strengthened by comparative experiments with helium and argon, where the diluent effect was even stronger for helium, caused by its higher thermal conductivity. In the shock tube, the diluent effect is opposite to that in the RCM. For dilute mixtures of isooctane, calculations have predicted that mixtures with argon will ignite faster than those with nitrogen, based on the relative heat capacities of the two diluent gases. Overall, we conclude that the choice of diluent gases in experimental devices must be made with care, as ignition delay times can depend strongly on the type of diluent gas used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call